5y^2+16-2y=(4y^2-2y+24)

Simple and best practice solution for 5y^2+16-2y=(4y^2-2y+24) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y^2+16-2y=(4y^2-2y+24) equation:



5y^2+16-2y=(4y^2-2y+24)
We move all terms to the left:
5y^2+16-2y-((4y^2-2y+24))=0
We calculate terms in parentheses: -((4y^2-2y+24)), so:
(4y^2-2y+24)
We get rid of parentheses
4y^2-2y+24
Back to the equation:
-(4y^2-2y+24)
We get rid of parentheses
5y^2-4y^2-2y+2y-24+16=0
We add all the numbers together, and all the variables
y^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $

See similar equations:

| 2x=12−4x | | (6x-3)÷(2x+5)=-2/3 | | 3x+11+5x-31=180 | | 18x=21x+7 | | 5−3⋅(3+5x)=7 | | x+1.5x=120 | | 3h+h=416 | | 2w+w=450 | | 6(3y+15)=39 | | x*0.85=90 | | 15(x-7)=19x-15= | | 15(x-7)=19x-15 | | 0.9x=100 | | (2x)^2=234 | | 5x-27/3=-6 | | x+.80x=25200 | | x+.80=25200 | | -7x-17=-4x-5 | | 2x-16=4x-12 | | 144÷8÷x=9 | | 239=193-y | | 6r-17r=66 | | 6x−11=3x^2 | | 3x=7=18 | | -6x2+4x-15=0 | | 5=4x+29 | | 4x=100+x | | 8(5x+5)−25=40x+15 | | x*0.666=3.75 | | 1x/2=3 | | 3-4x*(25-2X)=8x^2+x-300 | | 4^y=16 |

Equations solver categories